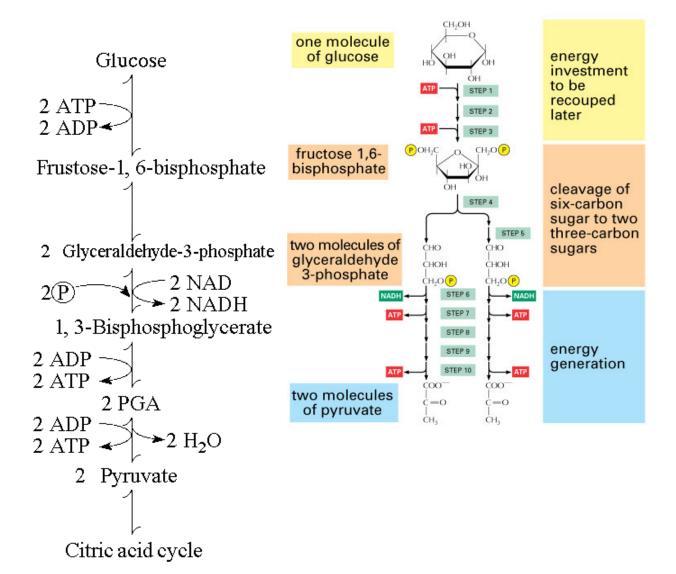
A.P. Biology Name____ Exercise To Help You Understand Glycolysis Textbook 168-169 1. Cells use most of their energy fighting entropy and maintaining o_____. 2. The direct molecular energy source for most of a cell's activities is the molecule 3. The most common cellular fuel is _____. _____ 4, Glucose is synthesized during the process of _____. 5. The complete metabolism of a molecule of glucose yields ____ kcal/mole of energy. 6. When viewed as a whole, cellular respiration must be considered an (exergonic | endergonic) process. 7. In glucose, energy is extracted primarily from C-___ bonds. 8. Which has more free energy: glucose or water? 9. All living organisms utilize _____ (aerobic / anaerobic) respiration for at least part of their ATP production. _____ 10. Aerobic respiration requires the presence of _____. ______11. The organism group that is most proficient at utilizing anaerobic respiration for ALL of their energy needs is the _____. Glycolysis 1. Glycolysis is the metabolism of glucose in the absence of _____ (a respiratory 2. Does glycolysis require the utilization of mitochondria? (yes or no) 3. Glycolysis begins with a g____ molecule and ends with the production of two p____ molecules. 4. Is there any CO₂ generation during glycolysis? 5. Is by-product water produced during glycolysis? 6. What is the *gross* energy yield of glycolysis? 7. What is the *net* energy yield of glycolysis? 8. Is the change of NAD⁺ to NADH an *oxidation* or a *reduction*? 9. The very first event in glycolysis is the p____ of glucose, an event that requires _____ (#) ATP molecules. 10. Does biphosphorylated glucose have *more* or *less* free energy than glucose? _______ 11. The net energy yield of glycolysis is ______% of the stored free energy in glucose. ______ 12. When muscles are working beyond the body's capacity to provide enough

Overview of Glycolysis


 1. How many ATPs in?	 7. How many H2O molecules out?
 2. How many ATPs <i>out</i> ?	 8. How many CO ₂ molecules out?
 3. How many NAD ⁺ s <i>in</i> ?	•
 4, How many NADHs out?	

_____ 13. During this form of exercise, the greatest quantity of energy is provided by

oxygen, the exercise is referred to as exercise.

what energy-liberating cellular process? g_____

5. How many carbon atoms *in*?
6. How many carbon atoms *out*?

A.F. DIOIOGY	A.P.	Biology
--------------	------	---------

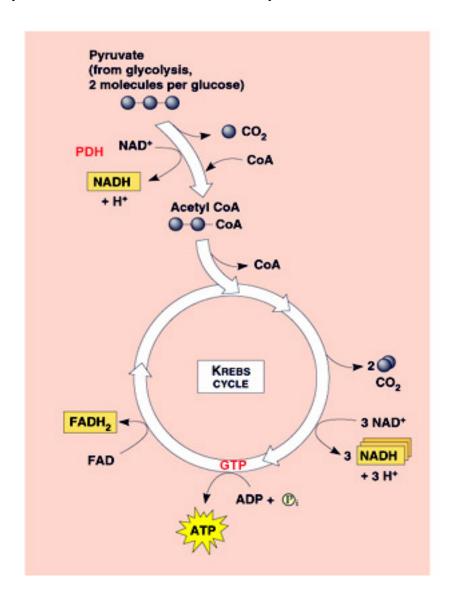
Name		

An Exercise to Help You Understand the Transition Reactions $Pages \ 170$

The transition reactions are so named because they link the biochemical events of g_____ with the cyclic events of the ______.

The organic molecule end-product of glycolysis was p______.

The electrons of glucose were transferred to __ _ _ _ to form __ _ _ _.


Did glycolysis occur in the cytoplasm or within the mitochondrion? _____.

Can pyruvate enter the mitochondrion? _____.

Can pyruvate enter the mitochondrion? _____
Can NAD⁺ enter the mitochondrion? _____

Pyruvate joins with a large molecule named ________ to form a 2-C - Enzyme/Coenzyme complex named ________. During this linking, the 3-C pyruvateloses one of its carbons in the form of the respiratory gas by-product _______. Since this event occurs *twice*, the total amount of CO2 generated during the transition reactions is _____ (#) molecules. Thus, so far, we have accounted for ______ (#) of the ______ (#) CO2 molecules produced during aerobic cellular respiration.

The 2-Carbon Acetyl-CoA then enters the _____ cycle.

A.P. Biology		Name	
An Exercise That Pages 170-172	Should Help Yo	ou Understand <i>The Citric Ac</i>	id Cycle
Another name for the Kr	ebs Cycle is the	Cycle.	
When Hans Krebs submit by his contempor and stayed true to Nobel prize in the	tted his paper regard aries. Unlike other so his	ing the biochemical events of the cientists, who would have He was rewarded for his He took the cash reward (\$100,000). stocks.	he perservered by receiving the 000) and bought himself a
		a result of electron release during	
What is the name of the o		ectrons? To the zyme-coenzyme complex that dor	
Each time <i>one</i> Acetyl-Co For each molecule of glu For each molecule of glu These (#) CO ₂ mo	A enters the Krebs c cose, the Krebs cycle cose, the Krebs cycle clecules, plus the	ycle, (#) CO2 molecules a e "turns" (#) times. e releases (#) CO2 molecule (#) CO2 molecules released du ed during the <i>aerobic</i> cellular resp	les. uring the transition reactions,
glucose? A	eld from the Krebs cy $\Delta TP(s)$.	ycle as the result of aerobically m	-
chemiosmosis? _ All of the following are e considered the M The entry	events which occur do OST IMPORTANT and exit of water.	uring the Krebs cycle. Which ON EVENT of Krebs Cycle? (check	NE of these events MUST be one!)
——— The releas	se of electrons, the re	duction of NAD and FAD, and th	ne transfer of the electrons to the

Pyruvate
(from glycolysis,
2 molecules per glucose)

NADH
+ H
Acetyl CoA
CoA

KREBS
CYCLE
FAD

ADP + P

ATP

Does the Krebs cycle occur outside of *or* within the mitochondrion?

electron transport system.

The production of by-product CO₂. The production of 2 ATP molecules.

A.P.	Biology
------	---------

Name

An Exercise To Help You Understand The Electron Transport Chain Pages 172-176

Because The Electron Transport Chain functions within and depends upon the internal structure of the mitochondrion, it is important that we reconsider this vital organelle:

Which one of the following is a **mitochondrion**?

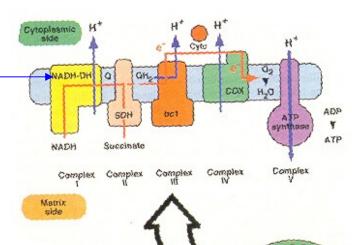
C.

A chemiosmotic system requires that an organelle possess an internal m The infoldings of the internal m_____ of the mitochondrion are called the _____ (singular: ______).

On the diagram below, identify the outer membrane, the inner membrane, the outer compartment and the

inner compartment, and the crista.

Which is MORE permeable to greater numbers of atoms and molecules, the *outer membrane or the internal* membrane?


The electron transport systems (AKA "chains") are embedded in the ______ (outer / inner) membrane.

The "carrier molecules" that transfer electrons belong to the p_____ category of organic molecules. These same "carrier molecules" also function as p______, moving hydrogen ions from the

_____ compartment to the _____ compartment.

A protein that contains iron is called a _____. Most of the proteins in the ETC are proteins of this type. For this reason, the reaction series is sometimes called the series.

Note: the movement of protons is shown with blue arrows (to the right) and the movements of electrons through the electron transport chain are shown with orange arrows.

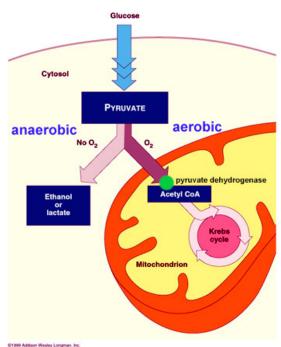
When an electron passes from one comp (oxidized redu (oxidized redu	uced) and the complex that gains the el		
Complex V (shown on the bottom of page that catalyzes A	ge 1) is an port. ADP phosphorylation to ATP.	It houses the enzyme	
Refer to the diagram below to answer the following questions:			
H ⁺ W	is membrane? that is this space called? H Cyt c IV O2 H H H20	Outer mitochondrial membrane H Intermembrane space What is this membrane denondrial membrane	
NADH H ⁺ NAD ⁺ FADH ₂ Succinate Fumarate Where did the NADH and FADH ₂ come	Active transport or diffusion? ATP synthase H ⁺ ion channel	ADP + HOPO ₃ ²⁻ Mitochondrial matrix Active transport or diffusion?	
What is oxygen used for?	Wh	at is this?	

The chemiosmotic ATP yield during the electron transport chain is _____ (#) ATPs. What happens if oxygen is NOT present?

The free energy stored in one molecule of ATP is _____ kcal/mole. The free energy value of glucose is ____ kcal/mole.

How efficient is the energy conversion from glucose to ATP? (express your answer as a percentage and show your work).

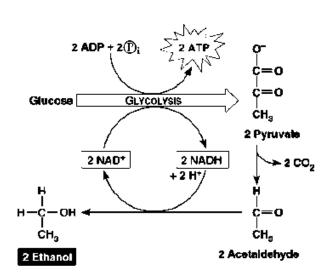
Brown Fat


This type of fat is named "brown fat" to distinguish it from the creamy or ivory type of fat that is much more common. Brown fat is the special fat of baby mammals and hibernating mammals (such as a bear).

A.P. Biology

Name

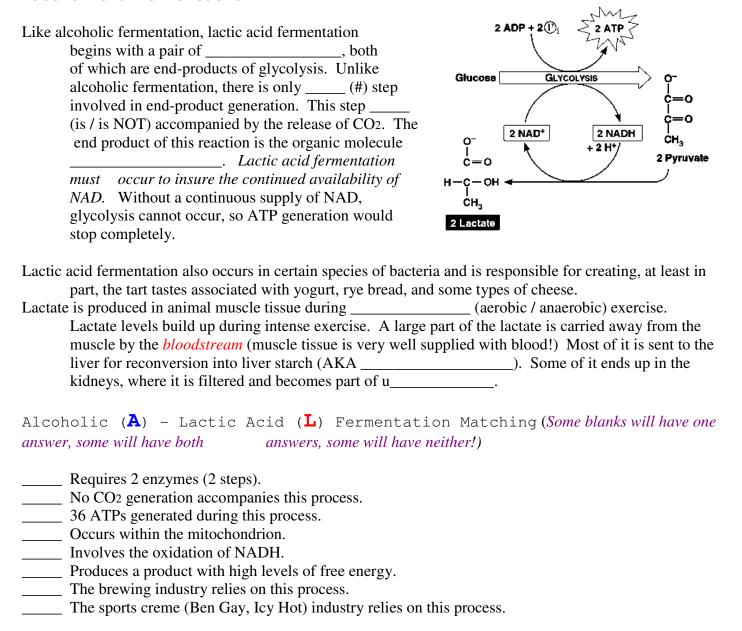
An Exercise To Help You Understand *The Fermentation Pathways* Textbook pages 177-179


Does	Fermentation	Involve
	Oxygen?	
	Mitochondria?	
	Internal membrane	s?
	Chemiosmosis?	
	Electron transport	systems?
	An energy-rich fin	al product?
Ferme	ntation involves all	of the steps that occur
	during g	plus a few additional steps.
The tw	o most common en	d-products of fermentation
	are e	(in yeasts and some bacteria)
	and l	(from muscle tissue.)

Alcoholic Fermentation

Fermentation begins with (and glycolysis ends with)
the molecule ________.

There are ______ (#) reactions that occur during
alcoholic fermentation. The first reaction involves
the decarboxylation of _______, turning it
into_______ (accompanied by the
release of CO2 gas). The second reaction changes
this two-C molecule into ______ and is
accompanied by the ______
(oxidation / reduction) of NAD. For each molecule
of glucose that glycolysis begins with, _____ (#)
molecules of ethyl alcohol are produced, along
with _____ (#) molecules of by-product CO2.


Of what use is this CO2 to a baker? ______Of what use is this CO2 to a brewer?

Cite three evidences that ethyl alcohol is an energy-rich end-product.

- 1.
- 2.
- 3.

In the space below, tell a little bit about *yeast*. Be certain to include a picture of this lowly organism and note its position on the "Tree of Life"

Lactic Acid Fermentation

In the space below, reveal your understanding of the concept of "oxygen debt". An illustration might be helpful in making your point.