
1 AP Biology Chapter 48 - Neurons, Synapses, and	Name
Gah! I HATE Reading The Overview The function of the neuron, stated as briefly as Are neural electrical signals long-distance or si Are neural chemical signals long-distance or si Are signals that travel the length of a neuron e	v! possible, is to
Synaptic bulb (axon terminal) Synaptic vesicle Neurotransmitter molecules Synaptic cleft Postsynaptic membrane Receptor site Neurotransmitter binding A simple cluster of neurons is called a	In the diagram to the left, circle the icon that represents an electrical signal. OK, now circle the icons that represent a chemical signal. A large group of neurons is called a
Concept 48.1: Neuron Organization	n And Structure Reflect Function In Information Transfer
What are the three stages of information proces 1. 2. 3. Integration occurs in ther The nerves found outside of the CNS constitute nervous system A bundle of neurons is called a	nervous system e the
In the diagram below, label a sensory neur	ron, an interneuron, and a motor neuron.
S. Sensory Neuron I. Interneuron M. Motor Neuron	 1. Transmit information toward interneurons. 2. The vast majority of neurons 3. Detect external stimuli 4. Transmit signals to muscle cells 5. Analyze and interpret 6. Trigger gland activity

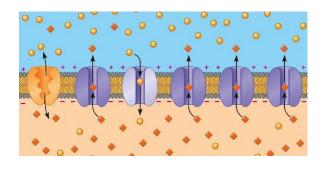
Neuron Structure and Function

Is a neuron a specialized cell or a generalized cell?

Label:

Dendrites Cell Body

Nucleus
Axon hillock
Presynaptic cell
Axon
Signal direction
Synaptic terminals
Postsynaptic cell
Synapse


In a single neuron	Are there multiple dendrites or is there a single dendrite?
	Are there multiple axons or is there a single axon?
	Can a signal (impulse) go in both directions or in one direction only?
	Which transmits signals to other cells: the axon or the dendrite ?
	Which is significantly longer, the axon or the dendrite ?
Other Questions:	
	What is the name of the cell junction at the end of the axon?
	What are the three cell types that can receive a neural signal?
	-
	ls a neurotransmitter electrical or chemical ?
	Which cell type secretes the neurotransmitter: presynaptic or postsynaptic ?
	In order to transmit signals to many cells, an(axon / dendrite) must be highly branched.
	_ The greatest number of synapses are found in (motor / inter / sensory) neurons.
	Cells that "take care of" neurons are called cells, or
	In the vertebrate animal body, are there more glial cells or more neurons ?

Concept 48.2 Ion Pumps And Ion Channels Establish The Resting Potential Of A Neuron

Do most cells maintain ion concentrations that are imbalanced or isotonic with The inside of a neuron is (negatively / positively) charged. The charge differential between the outside and inside of a neuron is called the m The membrane potential of a resting (non-conducting) neuron is between What are the two signals that can cause a change in this internal negative charge? 1. 2. It is only when the membrane potential CHANGES that we are able to a fur coat.	p mV.	
The Resting Potential		
The two ions that play an important role in electric potentials in neurons are BOTH	charged.	

They are, of course, the two elements _____ and ____.

From what food source do YOU get most of your potassium? _____ How about most of your sodium? _____

What is the overall charge of the outside of the cell?

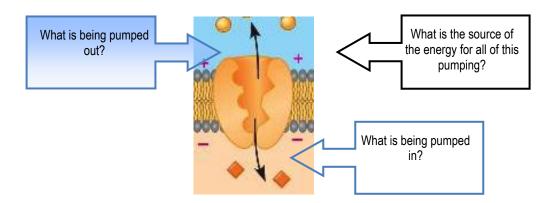
What is the overall charge of the inside of the cell?

Where is sodium more highly concentrated?

Where is potassium more highly concentrated?

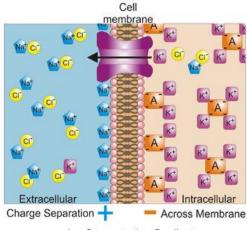
What is the little symbol for sodium? _

What is the little symbol for potassium?


What is this?

What is this?

The Sodium-Potassium Pump

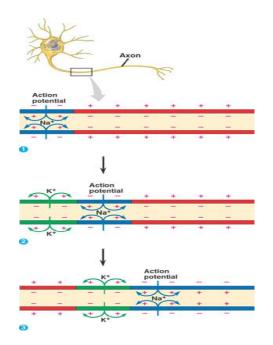


In addition to the potassium being concentrated on the outside of the neuron, there are also negatively charged _______ ions.

In addition to the concentration of sodium on the inside of the neuron, there are also large _______ (many of them protein molecules).

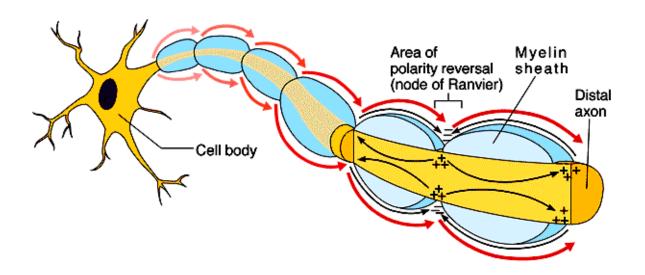
The sodium-potassium pump transports ______ (#) ions out of the cell for every ______ (#) potassium ions that it transports in.

Are ion channels selective, or do they allow the entry/exit of any form of ion? ______

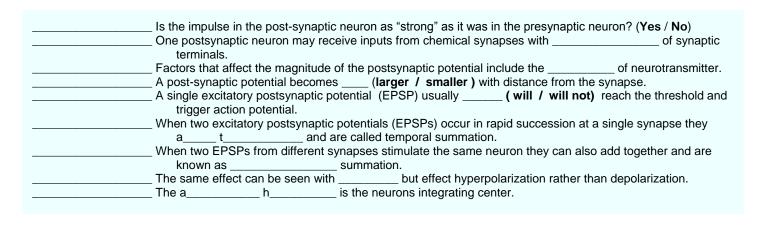

Ion Concentration Gradients

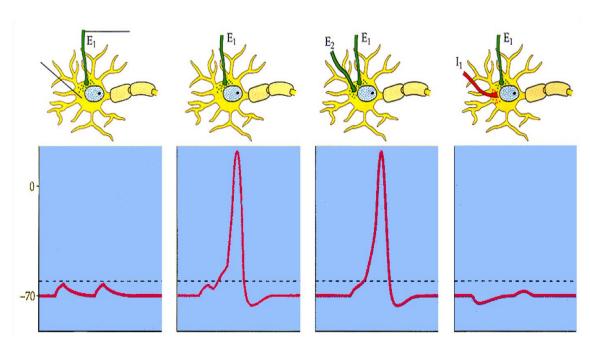
Potassium ions are concentrated on the	of the cell.
Sodium ions are concentrated on the	of the cell.
Chloride ions are concentrated on the	of the cell.
Large anions are concentrated on the	of the cell.
The overall charge of the outside of the cell is	
The overall charge of the inside of the cell is	
According to your textbook, are gated sodium ch	nannels usually closed or open?
According to your textbook, are gated potassium	n channels usually closed or open?
The net flow of K+ out of a neuron proceeds until	
In this model, is there a chloride ion channel?	 (Yes / No)
Why don't the anions escape to the outside of the	
Potassium ions will flow out of the cell until the c	
inside of the cell is balanced by the re	pulsion of potassium by
ions on the outside of the cell.	. , , , , , , , , , , , , , , , , , , ,

48.3 Action Potentials are the signals conducted by axons.


Action Potentials The change in membrane permeability to particular ions is due to the o and c of gated ion channels that then alters the membrane p
Ion Matching: Match the ion (in the yellow textbox) with the term or effect (in the green textbox)
Ions Found outside cell when at rest Found inside cell when at rest Cell becomes + as it moves by diffusion when gated channels open Cell becomes - as it moves by diffusion when gated channels open Hyperpolarization Depolarization Depolarization
Graded Potential or Action Potential????????? Involve voltage gated ion channels Depolarization must reach the threshold Shift in membrane potential that varies in magnitude Decay with distance from their source Constant magnitude and regenerate in adjacent regions of the membrane. Effect on generation of nerve signal Increased depolarization causes more sodium gates to open All or none response These three as well!
Membrane depolarization opens types of channels but they respond i and s S channels open, initiating an action potential. As an action potential proceeds the sodium channels are i until the membrane returns to r p P channels open more s than sodium but remain until the end of the action potential.
Sequence the following steps that occur during an action potential*: (reference Figure 48.11) Positive feedback brings membrane potential close to E_{Na} Membrane potential brought back to E_{K} Membrane permeability to K ⁺ higher than at rest Stimulus depolarizes membrane Threshold is crossed K ⁺ ions diffuse out of the cell Voltage gated Na ⁺ channels open Gated K ⁺ channels inactivate Na ⁺ channels open Gated K ⁺ channels close Membrane potential returns to resting potential Na ⁺ ions diffuse into the cell More depolarization occurs so more Na+ channels open Sate of the answers that follow.
gates remain closed and therefore a second apcannot be triggered during the refractory period. For most neurons the onset of an action potential and the end of the rpis only 1-2 mso hcan be produced per second by a single neuron. Differences in action potential fconveys information about s of the signal. Mutations in the genes that encode icccan cause disorders such as m affecting skeletal muscle and e affecting the brain.

 An action Potential is usually initiated at
 Na ⁺ flow creates an and depolarizing neighboring region of axon membrane.
 The action potential is repeated along length of axon.
 The action potential remains constant due to the response.
 The nerve impulse moves from to the
 like falling dominoes. Behind the depolarization zone is a zone of preventing an action potential
 from moving back toward the cell body. The gates inactivated during repolarization are gates.


Evolutionary Adaptations of Axon Structure


_ Axon is the major factor determining the speed of an action potential.
_ A axon will conduct an action potential faster .
_ Invertebrate axon diameters are for fast conduction while vertebrate axon diameters are narrower.
Vertebrate axons have electrical insulation known as that speeds up conduction
the gaps between adjacent Schwann cells are called
_ Gated and channels are concentrated in the nodes.
Action potentials "jump" from to during salutatory conduction.
Does this speed up or slow down the rate of impulse conduction?

48.4 How An Impulse Is Transmitted From A Neuron To Another Neuron (Or To A Gland or Muscle)

Synaptic terminal Postsynaptic membrane Synaptic terminal Postsynaptic membrane Synaptic terminal Postsynaptic cell Na* Neuro-transmitter Receptor Receptor Postsynaptic cell Na* Part of degraded neuro-transmitter Na* Part of degraded neuro-transmitter	An impulse jumps directly from a presynaptic neuron to a postsynaptic neuron in an synapseTwo cells connected by electrical synapses are connected to each other byThe gap between two neurons at a chemical synapse is called aNeurotransmitters are contained within small sacs calledThe gated ion channels on the postsynaptic neuron are (chemically / electrically) gatedLigand gated channel that is permeable to both Na ⁺ and K ⁺ and leads to depolarizationA ligand gated channel that is permeable to both K ⁺ and Cl ⁻ and leads to hyperpolarization What two things may happen to a neurotransmitter after its union with a receptor?
---	--

Neurotransmitters

More than	(#) neurotransmitters have	been identified and a single r	neurotransmitter may bind specifically to more than
receptor. (#) differen	nt receptors. They can e	and i	postsynaptic cells depending on the

Neurotransmitter Matching: Match the following neurotransmitter or class of neurotransmitters with their description.

|--|

Functions at neuromuscular junctions, memory formation and learning Response terminated by acetylcholinesterase Causes ion channels to open in skeletal muscle for response Receptors in PNS can bind with nicotine causing stimulant effect Activates a signal transduction pathway in the heart slowing the heart rate Disrupted by the gas sarin which leads to paralysis from build up of neurotransmitter Bacteria produce toxin that blocks release of this neurotransmitter leading to botulism
Group active in the vertebrate CNS and PNS Key role in long term memory Neurotransmitter at most inhibitory synapses in brain by increasing permeability to Cl-
Group synthesized from amino acids Excitatory neurotransmitter in autonomic nervous system and functions as a hormone Made from tyrosine and affects sleep, mood, attention and learning Made from tryptophan and affects sleep, mood, attention and learning Parkinson's is associated with a lack of this neurotransmitter Prozac enhances the effect of this neurotransmitter
Group that is made of short chains of amino acids Function as natural analgesics decreasing pain perception Opiates mimic this neurotransmitter and its effects such as decreased urine output, increased euphoria Dissolved gas that acts as a local regulator, relaxes smooth muscles