AP BIOLOGY EQUATIONS AND **FORMULAS**

Statistical Analysis and Probability

Mean

Standard Deviation*

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}}$$

Standard Error of the Mean*

Chi-Square

$$SE_{\overline{x}} = \frac{S}{\sqrt{n}}$$

$$\chi^2 = \sum \frac{(o-e)^2}{e}$$

Chi-Square Table

3. 전하게 되어 가면 하면 하다 하다 보고 있다. 1								
<i>p</i> ·	Degrees of Freedom							
value	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51
0.01	6.64	9.21	11.34	13.28	15.09	16.81	18.48	20.09

 \bar{x} = sample mean

n =size of the sample

s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population)

o = observed results

e =expected results

Degrees of freedom are equal to the number of distinct possible outcomes minus one.

Laws of Probability

If A and B are mutually exclusive, then:

$$P(A \text{ or } B) = P(A) + P(B)$$

If A and B are independent, then:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Hardy-Weinberg Equations

 $p^2 + 2pq + q^2 = 1$ p = frequency of the dominant allele in a population

p+q=1

q = frequency of the recessive allele in a population

Metric Prefixes

Factor	<u>Prefix</u>	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10-2	centi	c
10-3	milli	m
10-6	micro	μ
10-9	nano	n
10-12	pico	p

Mode = value that occurs most frequently in a data set

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

^{*} For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

INSERT E (continued)

Rate and Growth

Rate

 $\frac{dY}{dt}$

Population Growth

 $\frac{dN}{dt} = B - D$

Exponential Growth

 $\frac{dN}{dt} = r_{\text{max}} N$

Logistic Growth

$$\frac{dN}{dt} = r_{\max} N \left(\frac{K - N}{K} \right)$$

Temperature Coefficient Q₁₀†

$$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{T_2 - T_1}}$$

Primary Productivity Calculation

$$\frac{\text{mg O}_2}{\text{L}} \times \frac{0.698 \text{ mL}}{\text{mg}} = \frac{\text{mL O}_2}{\text{L}}$$

$$\frac{\text{mL O}_2}{\text{L}} \times \frac{0.536 \text{ mg C fixed}}{\text{mL O}_2} = \frac{\text{mg C fixed}}{\text{L}}$$

(at standard temperature and pressure)

dY = amount of change

dt = change in time

B = birth rate

D = death rate

N = population size

K = carrying capacity

 $r_{\text{max}} = \text{maximum per capita}$ growth rate of population

 T_2 = higher temperature

 T_1 = lower temperature

 k_2 = reaction rate at T_2

 k_1 = reaction rate at T_1

Q₁₀ = the factor by which the reaction rate increases when the temperature is raised by ten degrees

Water Potential (里)

 $\Psi = \Psi_{p} + \Psi_{s}$

 $\Psi_{\rm p}$ = pressure potential

 Ψ_s = solute potential

The water potential will be equal to the solute potential of a solution in an open container because the pressure potential of the solution in an open container is zero.

The Solute Potential of a Solution

 $\Psi_s = -iCRT$

i = ionization constant (this is 1.0 for sucrose because sucrose does not ionize in water)

C = molar concentration

R = pressure constant (R = 0.0831 liter bars/mole K)

T = temperature in Kelvin (°C + 273)

Surface Area and Volume

Volume of a Sphere

 $V = \frac{4}{3} \pi r^3$

Volume of a Rectangular Solid

V = lwh

Volume of a Right Cylinder

 $\dot{V} = \pi r^2 h$

Surface Area of a Sphere

 $A = 4\pi v^2$

Surface Area of a Cube

 $A = 6s^2$

Surface Area of a Rectangular Solid

 $A = \sum$ surface area of each side

r = radius

l = length

h = height

w = width

s =length of one side of a cube

A = surface area

V = volume

 Σ = sum of all

Dilution (used to create a dilute solution from a concentrated stock solution)

 $C_i V_i = C_f V_f$

i = initial (starting)

C =concentration of solute

f = final (desired) V = volume of solution

Gibbs Free Energy

 $\Delta G = \Delta H - T \Delta S$

 ΔG = change in Gibbs free energy

 ΔS = change in entropy

 $\Delta H = \text{change in enthalpy}$

T = absolute temperature (in Kelvin)

 $pH^* = -\log_{10} [H^+]$

^{*} For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

[†] For use with labs only (optional).