Free Energy Problems

- 1) A system at chemical equilibrium
 - A) consumes energy at a steady rate.
 - B) releases energy at a steady rate.
 - C) consumes or releases energy, depending on whether it is exergonic or endergonic.
 - D) has zero kinetic energy.
 - E) can do no work.
- 2) Which of the following shows the correct changes in thermodynamic properties for a chemical reaction in which amino acids are linked to form a protein?
 - A) $+\Delta H$, $+\Delta S$, $+\Delta G$
 - B) $+\Delta H$, $-\Delta S$, $-\Delta G$
 - C) $+\Delta H$, $-\Delta S$, $+\Delta G$
 - D) $-\Delta H$, $-\Delta S$, $+\Delta G$
 - E) $-\Delta H$, $+\Delta S$, $+\Delta G$
- 3) When glucose monomers are joined together by glycosidic linkages to form a cellulose polymer, the changes in free energy, total energy, and entropy are as follows:
 - A) $+\Delta G$, $+\Delta H$, $+\Delta S$.
 - B) $+\Delta G$, $+\Delta H$, $-\Delta S$.
 - C) $+\Delta G$, $-\Delta H$, $-\Delta S$.
 - D) $-\Delta G$, $+\Delta H$, $+\Delta S$.
 - E) $-\Delta G$, $-\Delta H$, $-\Delta S$.
- 4) A chemical reaction that has a positive ΔG is best described as
 - A) endergonic.
 - B) entropic.
 - C) enthalpic.
 - D) spontaneous.
 - E) exergonic.
- 5) Which of the following best describes enthalpy (*H*)?
 - A) the total kinetic energy of a system
 - B) the heat content of a chemical system
 - C) the system's entropy
 - D) the cell's energy equilibrium
 - E) the condition of a cell that is not able to react

- 6) Which of the following is *true for all exergonic reactions?*
 - A) The products have more total energy than the reactants.
 - B) The reaction proceeds with a net release of free energy.
 - C) Some reactants will be converted to products.
 - D) A net input of energy from the surroundings is required for the reactions to proceed.
 - E) The reactions are nonspontaneous.
- 7) Which of the following reactions is most likely to be coupled to the reaction ATP + $H_2O \rightarrow ADP + P_i (\triangle G = -7.3 \text{ kcal/mol})$?
 - A) $A + P_i \rightarrow AP (\Delta G = +10 \text{ kcal/mol})$
 - B) $B + P_i \rightarrow BP (\triangle G = +8 \text{ kcal/mol})$
 - C) $CP \rightarrow C + P_i (\Delta G = -4 \text{ kcal/mol})$
 - D) DP \rightarrow D + P_i ($\triangle G = -10 \text{ kcal/mol}$)
 - E) $E + P_i \rightarrow EP (\Delta G = +5 \text{ kcal/mol})$